Name	::	Earthquakes
Date:	Period:	Earth Science
	Packet: Earthquakes	
CLAS	S NOTES	
•	Earthquakes -	
•	Most earthquakes are caused by a movement along a energy is given off as a seismic wave	where potential
•	Fault -	
	Normal Fault -	
	Reverse Fault	
	Strike-slip Fault -	
•	Epicenter -	
•	<u>Focus</u> -	
•	Seismograph-	
•	Seismogram	

Packet: Earthquakes

•	Primary Wave [P-wave]
	P-waves are the waves
	Travel through,, and,
	<u>Compressional</u>
•	Secondary Wave [S-wave]
	S-waves are the wave

- Travel through _____ only
- <u>Shear</u> _____

Shear Wave [S-wave]

- Seismic waves radiate away from the focus
- Shadow Zone _____
 - P-waves are ______ when they reach the liquid outer core

P-wave Shadow Zone

• S-waves are ______ when they reach the outer core and are not transmitted through to the other side

Both the ______ and _____ are needed to determine the location of an earthquake's ______

Packet: Earthquakes

PART I QUESTIONS: MULTIPLE CHOICE

- 1. Earthquakes generate compressional waves [P-waves] and shear waves [S-waves]. Compared to the speed of shear waves in a given earth material, the speed of compressional waves is
 - a. always faster
 - b. always slower
 - c. always the same
 - d. sometimes faster and sometimes slower
- 2. What happens to P-waves and S-waves from an earthquake when they reach the outer core?
 - a. S-waves are transmitted through the outer core, but P-waves are not transmitted.
 - b. P-waves are transmitted through the outer core, but S-waves are not transmitted.
 - c. Both P-waves and S-waves are transmitted through the outer core.
 - d. Neither P-waves nor S-waves are transmitted through the outer core.
- 3. A huge undersea earthquake off the Alaskan coastline could produce a
 - a. tsunami
 - b. cyclone
 - c. hurricane
 - d. thunderstorm
- 4. The distance between an epicenter and seismograph's location can be calculated by using the
 - a. arrival time of the first P-wave
 - b. difference in arrival times between *P* and *S* waves
 - c. amplitude of the p-wave
 - d. energy released by an earthquake
- 5. A strong earthquake that occurs on the ocean floor could result in the formation of
 - a. a tsunami
 - b. a delta
 - c. an El Niño event
 - d. an ocean current
- 6. A seismic station recorded the P-waves, but no S-waves, from an earthquake because S-waves were
 - a. absorbed by Earth's outer core
 - b. transmitted only through liquids
 - c. weak and detected only at nearby locations
 - d. not produced by this earthquake
- 7. Which evidence recorded at seismic stations following an earthquake supports the inference that Earth's interior changes from solid rock to molten iron and nickel at the mantle-core boundary?
 - a. P-waves arrive earlier than S-waves.
 - b. *P*-waves and *S*-waves are both recorded at all stations.
 - c. Only S-waves are recorded at all stations.
 - d. Only *P*-waves are recorded on the opposite side of Earth.

Packet: Earthquakes

Base your answers to questions 8 through 10 on the diagram below and on your knowledge of Earth science. The diagram represents a cut-away view of Earth's interior and the paths of some of the seismic waves produced by an earthquake that originated below Earth's surface. Points A, B, and C represent seismic stations on Earth's surface. Point D represents a location at the boundary between the core and the mantle.

- 8. Which process prevented P-waves from arriving at seismic station B?
 - a. refraction
 - b. reflection
 - c. convection
 - d. conduction
- 9. Only P-waves were recorded at seismic station C because P-waves travel
 - a. only through Earth's interior, and S-waves travel only on Earth's surface
 - b. fast enough to penetrate the core, and S-waves travel too slowly
 - c. through iron and nickel, while S-waves cannot
 - d. through liquids, while S-waves cannot
- 10. What is the pressure and temperature at location D?
 - a. 1.5 million atmospheres and 5,000° C
 - b. 3.1 million atmospheres and 6,200° C
 - c. 0.2 million atmospheres and 2,600° C
 - d. 1.5 million atmospheres and 6,200° C